E-QRGMM: Efficient Generative Metamodeling for Covariate-Dependent Uncertainty Quantification
arXiv:2601.19256v1 Announce Type: cross Abstract: Covariate-dependent uncertainty quantification in simulation-based inference is crucial for high-stakes decision-making but remains challenging due to the limitations of existing methods such as conformal prediction and classical bootstrap, which struggle with covariate-specific conditioning. We propose Efficient Quantile-Regression-Based Generative Metamodeling (E-QRGMM), a novel framework that accelerates the quantile-regression-based generative metamodeling (QRGMM) approach by integrating cubic Hermite interpolation with gradient estimation. Theoretically, we show that E-QRGMM preserves the convergence rate of the original QRGMM while […]